Rational Points on Quartic Hypersurfaces
نویسنده
چکیده
Let X be a projective non-singular quartic hypersurface of dimension 39 or more, which is defined over Q. We show that X(Q) is non-empty provided that X(R) is non-empty and X has p-adic points for every prime p.
منابع مشابه
Hypersurfaces that are not stably rational
A fundamental problem of algebraic geometry is to determine which varieties are rational, that is, isomorphic to projective space after removing lower-dimensional subvarieties from both sides. In particular, we want to know which smooth hypersurfaces in projective space are rational. An easy case is that smooth complex hypersurfaces of degree at least n + 2 in P are not covered by rational curv...
متن کاملThe Number of Rational Quartics on Calabi-yau Hypersurfaces in Weighted Projective Space P(2, 1)
We compute the number of rational quartics on a general Calabi-Yau hypersurface in weighted projective space P(2, 1). The result agrees with the prediction made by mirror symmetry.
متن کاملLooking for Rational Curves on Cubic Hypersurfaces
The aim of these lectures is to study rational points and rational curves on varieties, mainly over finite fields Fq. We concentrate on hypersurfaces Xn of degree ≤ n+ 1 in Pn+1, especially on cubic hypersurfaces. The theorem of Chevalley–Warning (cf. Esnault’s lectures) guarantees rational points on low degree hypersurfaces over finite fields. That is, if X ⊂ Pn+1 is a hypersurface of degree ≤...
متن کاملRational points on diagonal quartic surfaces
We searched up to height 107 for rational points on diagonal quartic surfaces. The computations fill several gaps in earlier lists computed by Pinch, Swinnerton-Dyer, and Bright.
متن کاملDensity of Rational Points on Diagonal Quartic Surfaces
Let a, b, c, d be nonzero rational numbers whose product is a square, and let V be the diagonal quartic surface in P defined by ax + by + cz + dw = 0. We prove that if V contains a rational point that does not lie on any of the 48 lines on V or on any of the coordinate planes, then the set of rational points on V is dense in both the Zariski topology and the real analytic
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008